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A PRIORI ERROR ESTIMATES FOR NUMERICAL METHODS 
FOR SCALAR CONSERVATION LAWS. PART II: 

FLUX-SPLITTING MONOTONE SCHEMES ON IRREGULAR 
CARTESIAN GRIDS 

BERNARDO COCKBURN AND PIERRE-ALAIN GREMAUD 

ABSTRACT. This paper is the second of a series in which a general theory of a 
priori error estimates for scalar conservation laws is constructed. In this pa- 
per, we focus on how the lack of consistency introduced by the nonuniformity 
of the grids influences the convergence of flux-splitting monotone schemes to 
the entropy solution. We obtain the optimal rate of convergence of (Ax)1/2 in 
LI (L1) for consistent schemes in arbitrary grids without the use of any regu- 
larity property of the approximate solution. We then extend this result to less 
consistent schemes, called p-consistent schemes, and prove that they converge 
to the entropy solution with the rate of (Ax)min{l/2,P} in LI (L1); again, no 
regularity property of the approximate solution is used. Finally, we propose a 
new explanation of the fact that even inconsistent schemes converge with the 
rate of (Ax)1/2 in L?(L1). We show that this well-known supraconvergence 
phenomenon takes place because the consistency of the numerical flux and the 
fact that the scheme is written in conservation form allows the regularity prop- 
erties of its approximate solution (total variation boundedness) to compensate 
for its lack of consistency; the nonlinear nature of the problem does not play 
any role in this mechanism. All the above results hold in the multidimensional 
case, provided the grids are Cartesian products of one-dimensional nonuniform 
grids. 

1. INTRODUCTION 

This is the second of a series of papers in which we develop a theory of a priori 
error estimates, that is, estimates given solely in terms on the exact solution, for 
numerical methods for the scalar conservation law [11] 

(l.a) vt + V f(v) = O, in (O,T) x Rd, 

(1.lb) v(O) = vo, on r 

In the first paper of this series [4], we constructed a general approach aimed at 
obtaining a priori error estimates for numerical methods for scalar conservation laws 
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by a suitable modification of Kuznetsov approximation theory [12]. We illustrated 
the approach by establishing optimal error estimates for the Engquist-Osher scheme 
[5] on one-dimensional uniform grids without using any smoothness property of the 
approximate solution generated by the scheme; in previous work, [2], [3], [13]-[16], 
[18], [19], [20], [22], [24], [26], regularity properties of the approximate solution were 
always used (see also [23]). The extension of this result to the case of nonuniform 
grids is by no means trivial since the nonuniformity of the grids introduces a "loss" 
of consistency (see, for example, Hoffman [9], Pike [21], and Turkel [25]) which, 
nevertheless, does not deteriorate the rate of convergence of the global error. This 
paper is devoted to the study of this supraconvergence phenomenon, that is, to the 
study of the relation between the part of the truncation error generated by the lack 
of consistency of the scheme and the global error. 

Supraconvergence of numerical schemes has been analyzed in a variety of cases. 
For example, Manteuffel and White [17] studied supraconvergence for linear, second- 
order boundary value problems, Kreiss et al. [11] for high-order linear differential 
equations, B. Wendroff and A.B. White [27], [28] for nonlinear hyperbolic systems, 
Garcia-Archilla and Sanz-Serna [7] for third-order finite differences, and Garcia- 
Archilla [6] for the Korteweg-de Vries equation. To illustrate this supraconvergence 
phenomenon in our setting, let us consider the standard Engquist-Osher scheme on 
nonuniform grids, i.e., 

(Un1 -_ z)/At + (fEO(U2j, un 1) 
_ fEO(U?> un,))/Aj 0, n e NX,j e Z, 

with numerical flux fEO (a, b) = f+ (a) + f-(b), f+ and f being respectively the 
increasing and decreasing part of f. As usual, Aj = Xj+l/2 -Xj_1/2 denotes the cell 
centered around the node xi. Assuming that the solution v is smooth, the (formal) 
truncation error is given by TEf (tn' X) TEfisC ? TE/OnS + TEf n h where 

+ At,+l/ A1/2 ? j ax/j(VV)* xVn 

TEf.. ax (fA I (V)x~) _ fi (t) 

TEsc 2 i 4Aj 

?A~/2 A2~ 

4Aj 1/ 

TEf Aj+1/ A-/2 _ 1flVnxj +__j_12___j_1__If_Vj___axV cons 2Aj )'~7a~ 2Aj fjV)I~7 
A3 A3 

TfEf - (.( j+1/_2) + (.( 3-1/2) ? O(At2), -'h. o.t Aj Aj 

where v7 stands for V(tn'xj) and Aj+1/2 = (Aj + A3j+)/2. The above terms 
correspond respectively to the numerical viscosity of the scheme, to the consistency 
of the scheme, and to some "high-order" terms; note that the term TEfOnS vanishes 
if uniform grids are considered. It is easy to see that the (formal) truncation error 
tends to zero upon refinement if Aj varies smoothly with respect to j. Convergence 
can thus reasonably be expected in this case. On the other hand, if nonsmooth 
grids are considered, the scheme is not consistent. Indeed if, for instance, the grids 
.A. , Ax/2, Ax, Ax/2, Ax, . . . are considered, the term TEfOns does not tend to zero, 
and thus neither does the (formal) truncation error TEf (tn, xj). 

The following numerical example shows that the inconsistency of the scheme on 
rough grids does not prevent it from converging at the optimal rate. In Figure 1, 
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FIGURE 1. L1-errOr VS. A\x for a continuous (top), and discontin- 
uous (bottom) solution, on random grids 

we display the performance of the Engquist-Osher scheme on the classical example 
of the Burgers' equation with periodic boundary conditions and a sinusoidal initial 
condition (see [8] for details). 

About 400 randomly generated and thus non smooth-grids were considered. 
The global Ll-error at the final time is represented with respect to Ax, size of the 
largest element. In Figure 1 (top), the exact solution is smooth; the convergence 
rate is one. In Figure 1 (bottom), the exact solution exhibits a discontinuity but, 
interestingly enough, the scheme converges without any loss in the numerical rate 
of convergence. This shows that the (formal) truncation error is a poor indicator 
of the quality of a numerical algorithm. 

In this paper, we obtain the proper definition of the truncation error and show 
how to use it (i) to obtain a priori error estimates for flux-splitting monotone 
schemes in nonuniform grids, and (ii) to explain the supraconvergence phenome- 
non. Although Sanders [22] did establish an optimal error estimate for monotone 
schemes on nonuniform grids, his analysis relied on several regularity properties 
of the approximate solution, in particular total variation boundedness. This is a 
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point of significant importance, if one recalls that even the simplest schemes, the 
monotone schemes, have not been proven to generate approximate solutions with 
this kind of regularity, when defined on general triangulations. In this paper, to 
obtain our a priori error estimates, we do not use any regularity property of the 
approximate solution; as a consequence, we are forced to use suitable definitions 
of consistency. Thus, we obtain the optimal rate of convergence of (Ax)1/2 in 
L??(L1), for consistent schemes in arbitrary grids. We also consider a class of nu- 
merical schemes of varying degree of consistency called p-consistent and prove that 
they converge to the entropy solution with the rate of (Ax)min{1/2,P} in L`?(L1). 
In both cases, no regularity property of the approximate solution is used. 

To explain the supraconvergence of the numerical schemes under consideration 
(which was proven by Sanders [22]) we allow ourselves to use the total variation 
boundedness of the approximate solution but only to estimate the term that appears 
in the proper truncation error due to the inconsistency introduced by the nonuni- 
formity of the grids. We show that the optimal rate of convergence of (Ax)1/2 in 
L' (L1) can be obtained, even for inconsistent schemes, because the consistency 
of the numerical flux and the fact that the scheme is written in conservation form 
allow the regularity properties of the numerical approximation to compensate for 
the lack of consistency of the scheme; the nonlinearity of the problem does not play 
any role in this mechanism. To the knowledge of the authors, this is the first rigor- 
ous explanation of a supraconvergence phenomenon for hyperbolic problems with 
low regularity; the study of B. Wendroff and A.B. White [27], [28] on hyperbolic 
systems is formal and applies to smooth solutions only. 

Finally, we strongly emphasize that, although all our results are stated and 
proved in a one-dimensional framework, they can be immediately extended to the 
case of multidimensional problems, provided the grids are Cartesian products of 
nonuniform one-dimensional grids. The case of time-varying meshes will not be 
considered in this paper since it would add a great deal of complexity to the already 
very technical analysis presented. To the authors' knowledge, no such result is 
available in the present context. 

The paper is organized as follows. In ?2, the numerical schemes under considera- 
tion are presented, related technical assumptions are discussed, and the main results 
are stated and discussed. In ?3, we give a proof of our main result. Concluding 
remarks are offered in ?4. 

2. THE NUMERICAL SCHEMES AND THE MAIN RESULTS 

a. The numerical schemes. Given a partition of R+, {tn = nrAt}IemN, and a 
grid or partition of R, { Xj+l/2 }iEcZ we define an approximation u to the entropy 
solution v of (1.1) (with d = 1) as the piecewise-constant function 

(2.1) u(t,x) =u7, for (t,x) E [tn,tn+l) x (xJ1/2,xj+1/2), 

constructed as follows. At t = 0, the degrees of freedom of u are given by 

1 fx3+1/2 
(2.2a) u =A ] ao(s) ds. 

3 
A Xj_1l/2 

The remaining degrees of freedom are defined by the following flux-splitting scheme 
in conservation form: 

(2.2b) (an+1 - u7n)/At + (f 1n /2 - fjn-l/2)/AiJ = 0, n E N,j E Z, 
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where Ai = Xj+1/2 - Xji/2 and the numerical flux f>1/2 = fj+l/2(0i 
Un 

+1) has 
the form 

(2.3a) f3+12 =fcent,j+1/2 -fvsc,j+1121 

with 

(2.3b) fcen a+/^j 1/2 f (u M + bJ+112 (Un+) (2.3b) f~~~et,j+1/2 =Aj+1/2 
? 

bj+1/2 f(i, 

and 

(2.3c) fv(NcUJ+l/2 =j+/2 N(fu+1) NQu7)), 

where Aj+1/2 = (Ai + Aj+l)/2. We assume that the flux f+l/2 iS consistent with 

the nonlinearity f, i.e., that fj+1/2 (a, U) = f(u); this is equivalent to assume 

(2.3d) aj+l/2 + bj+l/2 = Aj+1/2. 

We also require 

(2.3e) max{aj+l/2, bj+l/2, 0} < aj+l/2 < AX =SUp Ai 
jEZ 

and 

(2.3f) N'(s) > I f'(s) |. 

Two standard examples of viscosity N are N(u) = f 
' 

I f '(s) I ds (Engquist-Osher 
flux) and N(u) = Cu (Lax-Friedrichs flux), where C is chosen as to satisfy (2.3f). 
As is well-known, condition (2.3f) ensures the monotonicity of the scheme under a 
suitable condition on the size of At which in our case turns out to be the following: 

(2.4a) ~At 
(2.4a) yII N'(u) II < cfl(j), j E 

where 

(2.4b) cfl-'(j) j+l/2 = 
I _+( ___ + ? 

Aj+1/2 Aj-1/2 Aj1/2 A-/ 
(2.4c) N'(u) = sup N'(u(t, x)). 

tE(O,T) 
xER 

Note that (for the Engquist-Osher scheme, for example) the above stability condi 
tion (2.4) boils down to the usual cfl(j) -1 in the case of uniform grids. It should 
also be noted that (2.4) is essentially a condition of the type At < k infJzi Ai, 
where k is a positive constant independent of the grid. It is therefore the smallest 
element AO which limits the size of the time step At. Although customary, such a 
condition might be unreasonably stringent for most of the elements. An interesting 
alternative is discussed in [1]. 
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b. Consistency and a priori error estimates. Before stating our error esti- 
mates, we need to elaborate on the notion of consistency of the schemes. 

The (formal) truncation error TEf (t', xj) for the schemes under consideration 
can be split into three terms, TEf{SC + TEf&, + TEf(O.t. defined as follows: 

TEfc 
At 

2(2vJ)'VJ ) i\J-1/2 aj-1/2 + Aj+1/2 ?j+1/2 a (N'(v n)a.,) 2 2A 3 

? bj+1/2 /Aj+/2-aj-l/2 /Aj-1/2 ax(f/(Vjn)axVn)j 

TEf =bj+l/2 + aj-1/2 - Ai3 C1_ /2 - e 
j12 cons 'A a-( )Aj 3 

33 

TEf o.t - O(At2) + rj 0(AX2), hot 

where r- = max{ 3 
1, 'ALj }. Note that we can use the consistency of the numerical 

flux (2.3) to write 

TEf 
- 

6_j+11/2- 
69j-1/2 2) 

f (V ) _ ?ej+1/2-?Cj-112 axN(0) cons A - 3f(~7 Aj%?i 

where 
A ~~~~~1 

69+1/2 = aj+l/2 - tj+l- 

Although it is not clear at this point, it is this structure of the consistency error 

TE/Ons which allows the phenomenon of supraconvergence to take place. What is 

clear, however, is that the consistency error is identically zero if both 6j+1/2 and 
a j+1/2 are constant. It is thus reasonable to measure the degree of consistency of 

the scheme by some seminorm related to the variation of 6 and oa. 

Our analysis shows that the correct quantity to consider is not 6j+1/2 but 

(2.5) 6j+1/2 = aj+l/2 - 1NJ 

and that the consistency of the error should be measured with the following semi- 
norm: 

(2 .6a) I ( lvar,1/2 
E SUP z.-X Z Xj1(zAX)1/2 I (j?1/2 - (j-1/2 1 

(2.6a) I ~~ ~ 
xEIR (AX)!1/ 

This motivates the following concepts of consistency. We say that the scheme is 

p-consistent with respect to the family of grids { { Xj+1/2 }jZ }AX>0 if there are 

two nonnegative constants CQ and CO, such that 

(2.6b) 16 ivar,1/2 < CQ (Ax), I a Ivar,1/2 < Cce (IAx)P. 

If CQ = Cc, = 0, we say that the scheme is consistent. For example, for the one- 

parameter family of schemes 

aj+l/2 = 2 ((1-O)Aj + OA-+,)I 

bj+1/= 2 ((10)- O)+ + ? 0Aj), a+1/2 = -Ax, 
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for 0 E [0, 1], we have 6j+1/2 = 0 (Aj+l - Aj)/2. Moreover, it is clear that the 
schemes are consistent for 0 = 0 regardless of the family of grids. For 0 E (0, 1], 
these schemes are p-consistent if the grids are such that 

E A Aj-1 - 2Aj + Aj+1 I < (Ax)1/2. C6 (,Ax)p. 
IJ -xj <(AX)1/2 

This property holds if the grids are p-smooth, that is, if there is a constant n such 
that 

(2.7) <rh-1 < NAx\P rh = sup 
A 

lrh 
- 

11 
i~E7Z A3 

Note that for 0-smooth grids like .. ., Ax/2, Ax, Ax/2, Ax,..., the schemes above 
are 0-consistent and clearly inconsistent, except for the scheme obtained with 
0 =0. 

We are now ready to state our error estimate which, following [4], is expressed in 
terms of the numerical viscosity associated to the scheme under consideration and 
in terms of the measure of consistency introduced above. 

Theorem 2.1. Let the Courant-Friedrichs-Levy condition (2.4) be satisfied. Let u 
be the piecewise-constant solution given by the scheme (2.2) with coefficients satisfy- 
ing (2.3), let v be the entropy solution, and set R(vo) = [inf xER vo(x), supxE vo(x)]. 
Then 

u| U(tN) -v(tN) L1(R) < 2 
|| uo - VO L1(R) + 8 | vo ITV(R) 

N 2tN 11 VV 11 (AX)1/2 

+ C I VO ITV(R) ( 16 Ivar,1/2 + I a Ivar,1/2) 

+ I VO ITV(R) (bi(AX)3/4 + b2 AX), 

where 11 = supjES SUPWER(VO) vj (w) and the local viscosity coefficient vj is given 
by 

vj(w) = I( a+1/2 Aj +?2Aj+1 + aj-1/2 Aj +? 2Aj N'I(w) 2 Ax 3Aj Ax 3Aj 
(aj+1/2 Aj +2Aj+1 _ bj31/2 A3j +?2Ajj )f(w) - At(f (w)) 

The constant C is given by 

C = 4 || N'(v) || (tN 2tN/H vv H) (1 + bo (AX) 14), 

and the constants bo, bl, and b2 are locally bounded functions that depend solely 
on the quantities I f'(v) I IAt/ Ax, I f'(v) H1/H VV 11, and {tN II vv I1ll/2 .Moreover, if 
the entropy solution has a finite number of discontinuities on each compact set 
of (O,T) x IR, we can take vv = Supt,(O,,) vj(v(t,x - 0),v(t,x + 0)), where 

xRr 
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V (V v+) -SUPu[v-Av+,v-vv+] |vj(u; V-) V+)j and 

Vj(u;Vvv +) =I 2{ ( 2Aj+l/2 ?Aj+l ? ?-l/2 A+ 2?Ai-) [A(v)] 
2 3Aj 3Aj [V] 

(a A3j + 2Aj+l b1 Aj + 2,Aj-1 [F(v)] 
+ J+l/2 33A3 j-1/2 3,A J [V] 

- At [F(v)] [f (v)] } 
IV] [V]I 

In the above expression, [v] = v-v, [F(v)] = f< f'(s) sgn(s - u) ds, and 

[f(v)] = f<V N'(s) sgn(s - u) ds. 

An immediate consequence of this result is the following. 

Corollary 2.2 (p-consistent schemes). With the notation and under the as- 
sumptions of Theorem 2.1, if the scheme is p-consistent, we have 

| u(tN) - v(tN) hL1(R) < 2 || uo- VO L1(R) + 8 I VO ITV(R) 2tN 11 (AX)1/2 

+ O(((AX)min{p,3/4}). 

For consistent schemes, we have that 6j+1/2 -6, aj+1/2- a, and we can write 

Vj (W) < 
Ax 
+ N'w -2- (f'(w))2|+i() 

where 

(3(w)?< (3 (?A + zX ) I rh-1 + + rh ) rh-i )N'(w) 

< C NI (w) (A\X)q, 

for q-smooth grids. Thus, Theorem 2.1 gives the following result. 

Corollary 2.3 (Consistent schemes). With the notation and under the assump- 
tions of Theorem 2.1, if the grids are q-smooth and if the scheme is consistent, we 
have 

11 U(tN) - V(tN) h1(R) < 2 uo - vo IHL1(R) + 8 I VO |TV(R)2tN VV 11 (AX)1/2 

+ o(9((/X)minf 1/2+q,3/4 ), 

where 

v= sup ) Ax N (w) 2x( 
WC1Z(vo) 

Note that even for 0-smooth grids, the optimal rate of convergence of 0((Ax)1/2) 
is achieved by the above schemes. 

c. Sketch of the proof. In what follows, we give an overview of the proof of Theo- 
rem 2.1 which is given in full detail in ?3. We start with the following approximation 



ERROR ESTIMATES FOR CONSERVATION LAWS 555 

inequality [4, Proposition 7.6]. If e(t') denotes the error 11 U(tn) -V(tn) flLl(R), then 

e(tN) < 2 e(O) + 8 (6c + et Hlf'(v) ||) I Vo |TV(R)+ 2 || f'(v) III VO |TV(R) At 

+ 2 lim sup E * 
v (11 v; t n)/W(t n -EdiSS (Uh, V; tn)/W(tn)}, 

w4X 1<<n<N 

where the so-called dual form E* v(U,v; tn) is, in this case, nothing but the trun- 
cation error and the form Edi,, (Uh, v; t n) contains the information on the entropy 
dissipation (or "hyperbolic coercivity") of the numerical scheme. The third term 
in the right-hand side reflects the fact that the scheme is first-order accurate in 
time. The parameters 63 and Et are auxiliary positive numbers that will be suitably 
chosen after obtaining the estimates of the forms E* v (U, v; tn) and Edi88(Uh, v; tn). 
The functions w, X, and W are auxiliary functions to be precisely defined in ?3.a. 

Since the numerical schemes under consideration are monotone, it can be easily 
proven that 

-Ediss(Uhv;t N) < o, 

under the condition (2.4) on the size of At. 
To estimate the dual form E ( v; tn), we first show that it is bounded by the 

truncation error 

E v (U, V; t n) < TE(u,V; t n), 

and then we obtain the corresponding estimate. 
To illustrate the estimate of E (u, v; tn ), let us consider that both the entropy 

solution v and the "approximate solution" u are smooth. We also assume that the 
functions a, b, 6, and oa defining the coefficients of the numerical scheme are smooth 
functions. In this case, the truncation error TE = TE(u, v; T) can be written as 
the sum of the following three terms 

TEvisc= JJ J Ax V(u, v;x') Soxx dx'dt'dxdt, 

T T 

TE 6x,=- JJJJ { 8;'(x') F(u, v) +? ,, (x') K(u, v) }Sx dx' dt' dx dt, 

f T Tf ( Alt) 2 

TEh.o.t = o R Jo R 6F xtdx'dt'dxdt 

T T 

+ J J { P(x') F (u, v) + Q(x') A(u, v) }oxxx dx' dt' dx dt, 

where, in order to render as clear as possible the manipulations that will be per- 
formed, we abbreviated v(t,x) by v, u(t',x') by u, and the auxiliary function 
(p(t, x, t', x') by p. The functions V, F, NV and Y are related to the numerical 
viscosity coefficient 

z (W;;X') = Ax) N'(w) + b(x') - a(x') t 2 
Ir f2A fW 

- 
f(w)-2A 
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and to the functions f and N as follows: 

ru ru 

V(u, v; x') j v(s; x') U'(u - s) ds, F(u, v) = j f'(s) U'(u - s) ds, 

pu ru 

Af(u, v) = j N'(s) U'(u - s) ds, ,F(u, v) = (f '(s))2 U'(u - s) ds, 

where U(w) = w 1. The functions P and Q satisfy 

| 'P IIL-(R), || Q IIL?(R) ? (AX)2/2. 

Before estimating the truncation error TE, let us compare it with the (formal) 
truncation error TEf, which is the sum of the following terms: 

TEfiSC (t, x) - 
I 

At o_ (f 2 (v(t, x)) axv(t, X)) - a (x) xx (N (v(t, x))) v 71 ~ 2 

+ - (b(x) - a(x)) 3xx (f (v(t, x))), 2 

TEL,, s(t, x) = -{x(x) Ox&f(v(t, x)) + ax(x) &xN(v(t, x))}, 

TEf Ot= O(At2) + O(AX2). 

We see that the definition of the (formal) truncation error TEf collapses when 
v is a nonsmooth function. However, the truncation error TE remains defined 
even if v and u are only bounded and measurable. Moreover, in the expression 
of the truncation error TE, it is possible to integrate by parts very easily due 
to the fact that the functions v = v(t, x) and u = u(t', x') are always evaluated 
at different points; this key feature was introduced by Kruzkov [11]. In order 
to compensate for this "doubling of the variables," the auxiliary function so is 
introduced and is defined to be an approximation of the product of the Dirac 
delta functions with support {t = t'} and {x = x'} respectively; more precisely, 
(p(t, x, t', x') = {w((t - t')/et)/et} {t((x - x')/ex)/ex}, where w and q are positive, 
even, smooth functions of unit mass and support in [-1, 1]. 

We are now ready to estimate TE. To estimate TEvis8, we integrate by parts in 
the variable x and use the definition of the function V(u, v; x') to obtain 

TEvisc = 1T 1 ax v(v; x') vx U'(u - v) fPx dx' dt' dx dt 

<Ax vVK/iv vx {I I ILx I dx dt} dxdt 

< 2Co r TV(R) Vv ,AX, 
Ex 

where Co = T IVOITV(R) W(T), and where W(s) is the antiderivative of w(s/Et)/Et, 
since 

T ._ 
Iko/ J1dtdd171 TV(R) 

T), JJ v[jIx_t?ITJvoJTv(_. 
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To estimate the consistency truncation error, TEcons we integrate once again by 
parts in the variable x and use the definitions of the functions F(u, v) and .N(u, v): 

TEcons -1 1 { as(x') F(u, v) +? a,(x')Af(u, v) }(px dx't ddt 
T T 

- 1T1 1T1 AA 6 (X') f '(v) + asx (x') N'(v) } U'(u - v) vx o dx' dt' dxdt 

XIf (v) I I vx I { 0 A lx, (x/) I dxl dtl }dx dt 

+JJ N'(v)vI { J I AX (X) I dx' dt'} dx dt 

<20C (1 ? (AX)/ ) 1171 HIL(R) (I 6 Ivar,1/2 + a l Ivar,1/2) v 
'x 

where Ci = Co I IN'(v)H, since 

fTf Ix (l,) I dx'dt' < 2 W(T)(1 ? (A ) ) 11/ NIIL-(R) IvIvar,1/2 
JoJR x 

Finally, to estimate TEh.o0t, we integrate by parts in x, use the definitions of F(u, v), 
.N(u, v), and F and proceed as before to get 

TEh.o.t < Cl { (At)2 Ii ITV(R) 1 2 (AX)2 1D' ITV(R} TEh0.t ?01 
Et 6x Hf'2 2 

Now, we pick r} such that: 

1 77 ITV(R) = I + 'E, 1 77 ITV(R) = 2 + e + I/E, II 77 IIL-(R) = (I + E)/21 

and insert the above estimates into the right-hand side of the approximation in- 
equality. To prove Theorem 2.1, we simply have to minimize the right-hand side 
of the approximation inequality with respect to the parameters Ex, 6t, and e. It 
turns out that the optimal parameters are Ex = O((Ax)1/2), Et = ((AX)3/4)v 

and e = O((Ax)1/4). The estimates of the truncation errors then take the form 

TEvi,c(u,v v; T)/W(T) <Col (/\x) 1/ 2 

TEcons (U, v; T)/W(T) < Cl (I 6 1var,1/2 + I a I var,1/2) v 

TEh.o.t. (U1, v; T)/W(T) < C12 (A\X)3/4, 

where the constants C0, i = 0, 1, 2, are independent of Ax for Ax small enough. 

d. An explanation of the supraconvergence. To illustrate the idea that allows 
the supraconvergence phenomenon to take place, we only need to show how to 
exploit the structure of the term TE,on, to obtain a better estimate. Since both 
terms of TE,on, are similar in structure, we concentrate only on the first: 

E = - jT jT 8 '(x') F(u,v)ox dx'dt'dxdt. 

Note that if we do not want to use the variation of 6 to estimate E), we can exploit 
the fact that it is possible to integrate by parts, this time with respect to x', to get 
an estimate involving a bound on the L?-norm of 6 only. It is this structure of the 
consistency error (which, as we saw in ?2.a, is a reflection of the consistency of the 
numerical flux and the conservativity of the scheme) which allows the phenomenon 
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of supraconvergence to take place. The price to pay, however, is that we must give 
up the restriction of not using regularity properties of the approximate solution u, 
as we show next. 

Thus, to estimate E, we integrate by parts in the variable x' and use the definition 
of the function F(u, v) to obtain 

e = ) J JTJ F(u, v) >px (6(x')x-)z' dx' dt' dx dt 

T T 

jTj jTj {U'(u - v) f'( u) uxsc x + F(u, v) PxaI } {6(x) - 8} dx dt dx dt 

T T 
= 1T1 1T1 U'(u - v) { f'(u) ux',sx + f'(v) vx Sx, } {6(xl) - dx' dt' dx dt 

j I f'(u) j l uxs I {ox {6(x') -6} dx dt} dx'dtl 

+J T f(v)IIvxJ {jj KxI{6(x')-8}dx'dt'}dxdt. 

At this point, it becomes clear that in order to estimate E, we must obtain a 
bound on the L?-norm of u and on its total variation. Since u is the "approximate 
solution" of a monotone scheme in one-space dimension, it is well-known that we 
have 

|f(u) UM || U IIL-(O,tN;TV(R)) <11 fl(V) 11 I VO ITV(R), 

With the above regularity property of the "approximate solution", we can obtain 

E) <4 C, 1 79 I TV (R), 
ex 

where 116 HIL(?(R)/R = infCR 1186-6 IIL?(R), since 

I J x, I dxl dtl J l xjIdx dt< 2 1 T()W(T). 

This implies the following upper bound for the consistency error: 

TEcon, (U,v; T) < 4 C1 17H ITV(R) 11 8 IL(R)/R + 11 a 
IIL?(R)/R 

The error estimate follows as in the previous section. A discrete version of the 
above argument can be easily obtained which, under the notation and assumptions 
of Theorem 2.1, leads to the error estimate: 

|| U(tN) v(tN) hL1(R) < 2 11 u - VO hL1(R) 

+ 8 1vo TV(R) v2tN (H IV | Ax+ 21 N'(v) 11 (11 6 1L(R)/R + 1 aIL(R)IR)) 

+ (b1 (AX)3/4 + b2 AX) I VO ITV(R)) 
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which gives the optimal rate of convergence of (Ax)1/2, as expected. Although the 
above error estimate is new, we are more interested in the technique to obtain it 
since it sheds light into the supraconvergence phenomenon. As we have just shown, 
the optimal rate of convergence of (Ax)'/2 can be obtained even though the scheme 
is not consistent because the consistency of its numerical flux and its conservativity 
makes possible for the lack of consistency of the scheme to be compensated by the 
regularity of its approximate solution u. The fact that the problem is nonlinear 
does not play any fundamental role in this mechanism. 

3. PROOF OF THEOREM 2.1 

In this section, we prove our Theorem 2.1. This section is closely related to 
section 7 of [4] in which we establish the same result for the Engquist-Osher scheme 
defined in uniform grids. Thus, we shall use the same notation and omit detailed 
proofs when those are variations of similar proofs in [4]. 

a. The approximation inequality. We start by displaying the following inequal- 
ity proven in [4, Proposition 7.6]. If e(tn) denotes the error 11 u(tn) - v(tn) hL1(R), 
then 

e(tN) < 2 e(O) + 8 (6c + ctIlf(v)||) I vo TV(R) + 2 || f(v) III VO |TV(R) At 

+ 2 lim sup {Ed* (-1 v; t n)IW(t n)-Edi,, (Uh, V; tn)/W(tn)}, 
W*X 1<n<N 

where, in this case, the form Edi85(Uh, v; tN) is given by 

tN N-1 

Edi85(Uh, v; tN) = jj A LREDn (v(t, x)) b(t, x, tn+1, x;) Aj At dx dt, 
n=0 iEZ 

where the local rate of entropy dissipation LREDjn(c) is given by 

LREDjn(c)= tjj (P>u ) -p (s)) U"(s - c) ds 

? A j (pt(u>1)- pj(s)) U"(s -c) ds 

+ X (pi(uJ?i) 3 pg(s)) U" (s - c) ds 

pj= - __ A %+t l/2 b a)l/2 )f(s) - At( A)i+1/2 ? )l2 () 

p2 - /2 ? -s)+ 1/2 N(s), 
pj3=_ Aj+/2 f(s)+ pl N(s), 

= \j+l/2 j+1/2 
Pi ~~f (s) ? 
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and the dual form E*, (Uh, v; tN) is given by 

tN tN 

Ediv( hxV; tN) j jj U( (t', XI) - v(t, x)) otp(t, x, t', XI) dx dt dx' dt 

tN 

+ U(u(t', xI)-_V(tN, x)) ('(tN, x, t', xI) dx dt dx' 

tN 

- j jj U(u(t', x') - vo(x)) p(0, x, t', x') dx dt dx' 

N-1 tN 
0 Xfq(t ,X tn+l, iJ) -0 (t, X, tn+l, ) j+j) 

EE 1 + aj-1/2 Aj-1/2} 

* F(un, v(t, x)) dx dt/At n=0 *EZ 

b 0 q(t,x,tIn+lxyI)X-_ q(t,x,tn+l1xI ) X i / ~~Aj-1/2} 

* F(u 7, v(t, x)) dx dt At. 

The function U(.) is nothing but I , and F(u, c) and AJ(u, c) are defined as 
follows: 

(3.1) F(u, c) = j f '(s) U'(s -c) ds, .Af(u, c) = j N'(s) U'(s -c) ds. 

The function q3 is given by 

1 rXj+l/j21/ 

(3.2) 44t, x, t', x) __ p(t, x, t', v) dxdx 

where the function = p(t, x, t', x') is defined as follows: 

(3.3a) so = we(t (- t')T7E(x (- x'), (x, t), (x', t') E IRt x IRi+, 

where 6t and ex are two arbitrary positive numbers and 

(3.3b) WEf(S) Ui(s -) dsx(s) e U(e )' 

for any s ct . For future reference, we also set 

(3.3c) W(t) = j 'We(s) ds. 

Finally, the functions w and tx are smooth approximations to X:Xo and XE, where 

r (1 ? 6)72, for lxi < (1 - )7(1 ? 6), 

XE(X) = t ( ? 6)2 (1 - xl)/4%, for lxl E [(1R-6)(1 ? 6)1], 

0t , elsewhere . 
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It is easy to verify that we can find a sequence of functions 7 such that 

(3.4a) lim 1q7 ITV(1) =I Xe ITV(R)= + e, 

(3.4b) lim I 17 ITV(R) I XE ITV(R) = 2 + e + 1/e. 

(3.4c) lim III IL-(R) - 11 XE IIL-(R) = (1 + e)/2. 

b. Estimate of Edi88(Uh, v; ta). To estimate Edis,(uh, v; ta), it is enough to follow 
the proof of the corresponding result in [4, Proposition 7.1]. 

Proposition 3.1. Under condition (2.3f) on the viscosity term N, and if the 
Courant-Friedrichs-Levy (CFL) condition (2.4) is satisfied, the local rate of en- 
tropy dissipation LREDjn(c) is nonnegative. Hence 

-Edss(h)V; tn) < O. 

Sketch of the proof. The above conditions ensure that the functions p3 (s), i = 1, 2, 
3, are nondecreasing in s. The result follows from this fact and the definition of 
Edi,, (Uh, V; t n). C 

c. Estimate of Ed*i(uh,v;tN). 

Proposition 3.2. We have 

lim sup {E*V(u v;tn)/W(tn)} < TEWvisc + TEWcons + TEWh.o.t. I 
wX 1<n<N 

where 

TEWvi?c(u,v;t'):< Co {2 17 VR) (1 + ?) }lV III 

tn) At ~~(Ax) 1/2 
TEWcons (( uV; t) 2 Cl (1+-) (1 + ? I IT7 11 L? (R) ( 61var,1/2 + Ilvar,1/2), 

et Ex 

TEWh..t.(u v; tVn) ?01 (At)2 117 ITV(R) If,,, (AX)2 IN ITV(R) (f + At) TEWh.o.t. (eU e< (1 
2 2 

where Co = tn IVOITV(R) and C, = CO If'(v) I. 
To prove this result, we proceed in several steps. 

First step: Relating the dual form E*v(u,v;t) to the truncation error. 
We start by suitably relating the dual form to the truncation error. To do that, we 
will need the following averages of the function so: 

(3.5a) 0(t, x, tn+1 xj) = A )t n 0(t, xi Sixj)ds 

1 /1/2 fxi+l+A\j+l p 

(3.5b) q(t, x,tn+1?,xj+1/2) =A+1/2 1-/2 I?Aj s(t,j x, tn+'1I s) ds dp, 

where o1(t, x, t'1, xJ+1/2) has been defined in such a way that the following equality 
holds: 

(3.5c) ox (t, xI t I Xj+1?2) = 
Aj(t 1x: t/ ) )- f(t, x, tr+l, x2+i) 

With the above notation, we have the following upper bound for E v (uh, v; tN). 
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Lemma 3.3. We have 

Edv(Uhv v. tN) < ] / Aj2 xt(t, x, tn1 Xj) F(u7, v(t, x)) dx dt At 

? yU(th x)V(u7 v(t, x))dxdtAt 
n=o jEz 
N-1 tN 

- EiI X 7 n (t, x) F(u7n, v(t, x)) dx dt At, 

n=o jEZ 

where 

4>'1(tj x) = aj+l/2 Ox4(t, x, tn+l, Xj+l/2) + bj-1/2 4X(t, x, tn+, Xj_1/2) 

n1 At t+ Ajy 0x(tj XIt I x ) + -\ 2 j qxt(t, xt+l xj), 

and 

x7 (t, x) = - j+l/20x(t x,t + Xj+l/2) + ej-l/242x(t, x,t +I Xj1/2) 

To prove this result, we use the fact that v is the entropy solution and make 
some algebraic manipulations; see the proof of the similar result [4, Proposition 
7.9]. 

Next, we need to relate the functions q$ and q$ as defined in (3.5). The relations 
we need are displayed in the following result, which can be obtained by using simple 
Taylor expansions. 

Lemma 3.4. We have 

t j t + 
I X12)= q$(t, x tn+1 

I xj) 3 6 ?x (t, x+ tn?, 
It 

n+ 

I'Xj?3/2 

+Xj32 Pj (x') (Px'x' (t, x, tn+l, x') dx' 
j+1/2 

? j Qt (x') (,x, x,(t, x, tn+l,x) dx', 
Xj-1/2 

and 

0(t, , tn+ , xyj1/2) =$(t, xi tn+l xj) + ? 6 Ox (t tn+ 

? J QQ7 (x') PRx'x' (t, x, tn+l, x') dx' 
Xj-1/2 

? j Pj- (x) (x,x, (t, x, tn+l,x') dx'. 
Xj-3/2 
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The polynomials P7 and Q7 are given by 

__ ( (Xj+3/2 - XI)3 -(/ (x'I - XJ312)3 
P+(x') - 6 Aj+1/2 A+l' P6 Aj-1/2 A -1 

Q+(x') - (X' -Xj11/2 
- Aj+1/2)3 + (Aj+1/2 )3 Aj+ - Aj (XI-Xj-112), 

I (Xj+1/2 - X - Aj-1/2)3 + (Aj-1/2)+ Ai3 - 
Q-(X ) = - + Aj-1 - 

A? (Xj+1/2- XI). 
3AJl1/2Ai 12 Aj 

With the above lemma, we can now rewrite the upper bound of Ediv(Uh, v; tN) 

as the sum of three terms. The first, TEVi,,(u, v; tN), is that part of the truncation 
error which contains the information of the viscosity of the numerical scheme. The 
second term, TEcons (u, v; tN), contains information concerning the consistency of 
the numerical scheme; indeed, if the scheme is consistent, then TEcons(u, v; tN) = 
0. We emphasize that to define this term, the definition of 6j+1/2, (2.5), must 
be used. The third term, TEh.o.t. (U, V; tN), contains the high-order terms in the 
truncation error and, as expected, will be dominated by the term TEvisc(u, v; tN) 

and TEcons (u, v; tN). 

Lemma 3.5. We have 

Edi v(Uh, V; tN) < TEvic (u, v; tN) + TEcons (u, v; tN) + TEh.o.t. (u, v; tN), 

where 
N-1 tN 

TEvisc(u, v; tN) = >3 >311 VISCjn (v(t, x); t, x) dx dt At n=o jEZ oD 

N-1 NAt 
->3 3 fJ F(0u, V(tN, X)) 2 Ox(tN, x tn+1, x) dx Aj At 
n=O jEZ 

?+ 3>3 E f (0, v(to, x)) A2 Ox(0, x, tIn,, x ) dx Aj At, 
n=o jEZ 

N-1 tN 

TEcons(u, v; tN) = : >3]] CONSjn(v(t,x); t, x) dx dt At, 
n=O JEZ 

N-1 tN 

TEh. o. t. (U, v; tN) =E >3]] HOTjn (v (t, x); t, x) dx dt At 
n=O jEZ 

f N 
At 

->3 3 fJ F(u0, v(t?, x)) 2 Ox$(t, x, xtn+, xj) dx Aj At. 
n=O jEZ 

The 'viscosity' term- VISCjn (c; t, x) is given by 

time cent visc 

VISCjn(c; t, x) =VISC7n(c; t, x) + VISC7,(c; t, x) + VISC7n(c; t, x), 
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where 
time At t+ 

VISCO'(c; t, x) = F(u7n, c) {- 2Aj qxt(tI x, 1+1, xj)}, 

VISC7 (c; t, x) =F(u7n, c) { aj+l/2 A3 ? 2 Aj+ 

3 ~ ~ ~ ~ -j 3/ 6-?6}XtXXnlj 

VISC7n(c; t, x) =f(Uj ,c) { %j++/2 2A3+1 

+ -1/2 Aj + 2Aj-1 } x(t, X, tn+1 xj). 

The 'consistency' term CONSjn (c; t, x) is given by 
cent visc 

CONSn(c; t, x) =CONS7n(c; t, x) + CONS7n(c; t, x), 

where 
cent n t+ 

CONSj (c; t, x) =F(u7, c) (-6jj+1/2 + &j-1/2) Ox$(t, x, tn+l, Xj), 
vicn 

CONSj (c; t, x) =A(u7, c) (-Cej+1/2 + Cxj-1/2) Ox(t, x, tn+l, xj). 

Finally, the 'high-order' term HOTjn (c; t, x) is given by 
time cent visc 

HOTjn(c; t, x) =HOTjn(c; t, x) + HOTjn (c; t, x) + HOTjn (c; t, x), 
where 

timeAjx tX t1 Xj O tX t1 
HOT7n(c; t, x) =F(u7n, c) {AAq $(t, x, tn+l,xj) - Aq(t, x,tn+l,xj) 

+ 2 /jq$xt(t, x, tn+l ,xj)} 
cent ( XJ+3/2 

HOT (c; t, x) { j+1/2 ] () X n+l x) dx' 
Xj+l/2 

fXj+1/2Qt(I p,, t 
,t+ aj+1/2 3 (xx) Px'x'x (t, x, tn+l, x') dxl 

j-1/2 

fXj+1/2 

-bj-1/2 j Qj (xI) X,XX (t,Xtn+1,xl) dx' 
j-1/2 

- bj_/2 J 177 (x' ) '2pxlxlx (t) x, tn+lx)dx' } F(u7n, c), 
Xj_3/2 

HOTjn(c; t, x)= -j+1/2 J Pt+(x) px x x(t, x, t I, x') dx' 
xj+1/2 

- +1/2 J Q+X(x1 ) 2 
X, tn+l, x) dx' 

+ C-1/2 J Qt (x) tpx/ /x (t,x) tn+ ,x') dx' 
j 1/2 

+ aj-1/2 J PQ(xI) )xlxlx(t,X,tn+1 X) dx' }A(vi,c). 
Xj -3/2 
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Second step: Estimating TEvi,,(u, v; tN). In this section, we prove the following 
result. 

Lemma 3.6. If (2.3) and (2.4) hold, we have 

TEvisc(ulv;tN) < 2Co IT1 ITV((R) (1+At) lMvjjAXj 

where Co = tN I vo I TV (R) W(tN). 

We need the following auxiliary result whose proof can be found in the proof of 
[4, Lemma 7.13]. 

Lemma 3.7. We have 

N-1iA 

sup E wet(t - tn+?1) At < < 2 (1 +-) W(tN). 
tE(O,tN) n= e 

Proof of Lemma 3.6 . As in the proof of [4, Lemma 7.11], it is enough to consider 
an entropy solution v that is everywhere smooth except on a single discontinuity 
curve C = {(x(t),t): t E (0,tN)}. 

We have 

N-1 

TEvisc(u, V; tN) (tn+1 , Xj) Aj At 
n=O jEZ 

where 

~tNr At 
t+li)= 1 ]1F(Un,v (t,x)) 2 (t, X tn+ 

1 

+ F(u , v(t, x)) (aj+/2 Aj + 2Aj+l 

-bj?1/2 j + 2Aj-1 NXX(t) Vtn+1 Xj) 

? Al(Uj , V (t, X)) (aj+ l/2 
Aj + 2Aj+l 

Ai + 2Aj-) qxx (t,x,tn+1,xj)}dxdt 

- F(un V(tN X)) At ox (tN,x,tn+l1xj) dx 
+ 3/ (un)t(v) 2 

?f(F(un,v(o,x))At (,, I j x 
3~J 2 , xd. 
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A couple of integrations by parts yields 

N x(t)r A + 2 zj \2 2 - )z?Ajd1xdt 

, 4 -AtFt+ aj+,/: 6bj6 F 

JO Jx(t)2 6AtJ 
: 

6Aj 

oc ~ ~ ~ ~ 63 
+ Cej+112 Aj +Z 2j+l + aj_/ Aj +Z 2j- Arx ox dxdt 

? (~J+1/2 A- ? z,i?%1/:2 A -iN {-0\[][0 I Aa+l j + 2A+ j -+-/ 2Aj- )F] 

+(+l2 AtF +Z aj 1/2 6Aj bj_1: 6Aj 
x [ 

where the last integral is understood to be along the discontinuity line C. 
The jump of a function G(v) across C at a point (x(t), t) is denoted [C] = 

G(v(t, x(t) ? 0)) -G(v(t, x(t)-O0)). 
Setting vj = z-'/(u;v(t,x(t) - O),v(t,x(t)Aj 0)), where 2j(U;V-,V+) is defined in 

Theorem 2.1, we get 

tN 
If I(t Aj+2jlA A 

E(tn,j) = - jtN {j Pjvxq5 dx ?t[vFax? j j)xq$xjdx}Fdt. 

Proceeding again as in [4], we set 

1izoj11= sup supIf'jI, 
G xt)t ](G)xdx} 

RtN x x(t) f ) 

l-tlxi)l L< lVl 4 vx O?x dx + |i[vl Obxl + vjvxolx dx dt. 

We would like to analyze further the dependence of i>j with respect to u. Setting 
c#i(u) = ai(u;nv,v) and taking into account (3.1), direct calculations yield 

tCj/tA3N ? ) N'(u) 

(3-6)-i2~+ A?A~ 

+ 1a3+l/2 - j f'(u) 

-2Atf(V_ V( )j1(u)}. 
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Therefore zv#(u) is constant for any value of u which does not lie between v- and 
v+. This implies that 

sup Izv#(u)I = sup Iv# (u)I = vj (v-, v+) Ax. 
uER uE[v-Av+,v-Vv+] 

Inserting Vj(v-,V+) in the bound (3.6) and using the definition of llmvvl, we get, 
since v is the entropy solution 

tN x(t) ?? 

TEvisc(u,v; tN) ? Tat,LxVivx IA X Ivxl dx + I[v]I + j Ivxldx}dt 

? Tav,xtNIVILo(O,tN;TV(lR))l/v1I Ax 

? TauxttN |O ITV(R)I11 VVI AX, 

where 
N-1 

t? L (0, n=0 jNZ } 

< { 17(Y) I dy } sup {E we (t-tn+) At} 
11.Ex tE (0,tN ) n=0 

Taking Lemma 3.7 into account achieves the proof. 

Third step: Estimating TEcons(u, V; tN). 

Lemma 3.8. We have 
At (A)1/2 

TEcons (U7 V; tN) < 2 C, (I+-)) () 71 IILOL(R) (I 6 lvar,1/2 + I a lvar,1/2), 

where C, = tNIvoITV(lR) IIN'(v)|I W(tN). 

Note that if the scheme is consistent, the upper bound for TE,,n,(u,v;tN) is 
equal to zero, as expected. 

We will need the following simple auxiliary result. 

Lemma 3.9. We have 

7 E 1 6j+1/2 - 6j<1/21( 1 + (AX)1/2 ) 16 lvar,1/2 
Ix-xjIe<x Ex 

Proof of Lemma 3.8. The consistency error TEcons (u, v; tN) is the sum of two terms 
of the form 

N-1 tN 

j j (G(u, v(t, x))) q$(t, x, tn+l,xj)x ((j+1/2 - Cj-1/2) dx dt At, 
n=O i C- 

one of which has ( = 6 and G = F, and the other a = ce and G = AP. Thus, it is 
enough to get an estimate for E0. 

To do that, we assume that the entropy solution v is smooth; see the proof [4, 
Proposition 5.5]. First, we integrate by parts in the x variable to obtain 

N-1 tN 

03 = E 5]] g A(G(u0, v(t, x))) x(t, X, t+1 , Xj) ((j+1/2 - (j-1/2) dx dt A\t 
n=O i Nb 

?-Taux tNII1N/(v)II1IVoITV(IR), by (2.3f) and (3.1), 
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where 
N-i 

Taux = sup{ E 
E 0(t, x, tn1 xj) I (j+1/2 (j-1/2 I AjA"\t 

tE(O,t ) n=O jC7Z - 
xEaR 

-I 11 IIL -(R) SUP N- Wet (t _ tn+1)At} 1f Z I?EX Qj+1/2 -1/2L1 
t(E(O,tN) n= Iex 

Taking Lemmas 3.7 and 3.9 into account achieves the proof. O 

Fourth step: Estimating TEh.0.t. (u, v; tN). 

Lemma 3.10. Suppose that the conditions (2.3) are satisfied. Then, 

TEh.o.t. (t, v; t N) < C1{ (At)2 I ' ITV(R) 1f H + 2 (AX)2 I n' ITV(R) (1 + At) } 
et exexCet' 

where C1 = tn IVOITV(R) 1ff'(v)f1 W(tn). 

To prove the above result, we rewrite TEh.o.t. (u, v; tN) as the sum 

time cent vise 

TEh0o.t (u, v; t N) + TEh.o.t. (u, v; t N) + TEho.t. (u, v; t N), 

with the obvious notation, and estimate each of the above three terms. The follow- 
ing estimate can be easily obtained by following the techniques used in the proofs 
of [4, Lemma 7.12] and [4, Lemma 7.13] and by using (2.3f). 

Lemma 3.11. We have 

TEh.O.t (u, V tN) <: C (At)2 I 7 ITV(R) 

To estimate the two remaining terms, we need a couple of simple auxiliary results. 

Lemma 3.12. We have 

Pi 3 11 Pj IILoo(Xj+112,X+32) j+I 

1 
qj++ IL (Q2IL,(x 3/2) ? 6 max{Aj I Aj+i }I 

qf --IQJ HLoo(X3+112XX+32) ? 6 max{A\2X3A1}, 

Qj - 113 ILO+1/25X3+3/2) < 6 /\j-1 1 p7 fl P~~~~~~ 
HJLo(Xj+112,X3+3/2) 

~ 

This result follows easily from the definition of the polynomials Pj and Q-4 in 
Lemma 3.4. 

Lemma 3.13. Suppose the conditions (2.3) are satisfied. Then we have 

_i I aj-1/21 P+ 1 + I aj+1/21 | t + I bj-1/21|q b+/ Pj+1 \ 

ki- Iaj-1/2 P+ 1 + I %j+1/2 I q+ + I aj-1/2 1 qj + I %j+1/2 i ?< (Ax< ) 

The proof follows easily from the preceding lemma and conditions (2.3e) and 
(2.3f). We can now estimate the two remaining terms. 
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Lemma 3.14. Suppose that the conditions (2.3) are satisfied. Then, 

cent 
V;t)/W(N ,(X2I TV(IR) +At) 

TEh.o.t.(Uv2;t )/W(tN) ?Ct (Ax)1 (1 + ) 

TEh.ot (u,v;tN)/W(tN) < Ci (AX)2 I ?7 TV(R) (1 + t) 

Proof. We only have to prove the first estimate since the second is similar and the 
upper bounds for ij and kj given in Lemma 3.13 are identical. To do that, let 

cent 
us rewrite TEh. o. t. (u, v; tN) as the sum 01 + 02 + 03 + 64 with obvious notation. 
Next, let us estimate the first term 

N-i tN 

01 = E EIO IRJ F(u7n, v(t, x)) aj+1/2 
n=O JEZ 

(X +3/2 ] Pj+(x') (pxtx(t, x, t?+l, x') dx' dx dt At. 
x3+1/2 

We can assume that the entropy solution v is smooth since the general case can 
be obtained by a standard density argument; see the proof [4, Proposition 5.5]. 
Integrating by parts in the variable x, taking absolute values, and changing the 
index j, we get 

tN 

61 < J I f'(v(t, x)) I vx (t, x) I fi(t, x) dx dt, 

where 
N-i fX3+1/2 

Ti (tX, = I aj-1/2 P1 ] IOx/Zx (t, X, tn+1 x) I dxl At. 
n=O jE, 3 -1/2 

Proceeding in a similar way with (2, 63, and 64, we get 

cent rN 

TEh.o.t. (U, v; tN) 
< f '(v(t, x)) vx (t, x) I f(t, x) dx dt 

where 
N-i 

j12IWllt Xtn1I 
T(t, x) S S - ] Jx'X (t, x, tn+, x)| dx /At. 

n=O jEZ X3 -1/2 

Thus, by (2.3f), 
cent 

V;t N 
TEh.o.t. (u, v tN) <T__ ta || N' | IVO ITV(R), 

where 

Taux = sup T(t,x) 
xER,tE (o,tN) 

(,X2 {N-i 
-2E2 7JR (y) I dY} s0up EW'Et (t _tn+1 A/t -/\X) 1 71 YU)(1 + tE(0- tN 

n=), 

<(Ax 2?7T(R (1 + At) W(N) 
ex e~~~~t 
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by the definition of ,o (3.3), by Lemma 3.13, and by Lemma 3.7. This completes 
the proof. D 

Lemma 3.10 follows easily from Lemmas 3.11 and 3.14. 

d. Proof of the error estimate. To obtain the error estimate, we proceed exactly 
as in [4]. If we insert the estimates obtained in ?3.b and ?3.c into the approximation 
inequality of ?3.a, and we take the auxiliary function r1 as in (3.4), we obtain 

e(tN) < 2 e(0) + 8 (cS + etIlf'(v)||) I vo |TV(R) + 2 || f'(v) III VO ITV(R) At 

+2co 2 1 
H1 ITV(R) (1 +At) }||VV 11 

+4C1 (1 + ) (1 + -- ) 11 71 IIL?(R) (I 6 kvar,1/2 + I Q Ivar,1/2) 

cx~~~~~ 
+2 c1 { )1T TV(IR) 11n1 + 2 ( lAI 1IV()(1+Zt) } 

where Co = tNIvoITv(R) and Ci = Co 1f N'(v) 11. The estimate of Theorem 2.1 is 
then obtained by eliminating the parameter At by taking into account the CFL 
condition (2.4) and then taking the very same optimal values taken for the case 
treated in [4], namely, 

*= tN flvv 11 Ax/2, ct -At (Ax)3/4, e = A (Ax)1/4. 

This concludes the proof of Theorem 2.1. 

4. CONCLUDING REMARKS 

In [4], we proposed a general theory of a priori error estimates for scalar con- 
servation laws, based on the original Kuznetsov approximation theory [12]. In 
the present paper, this approach is applied to flux-splitting monotone schemes on 
(Cartesian products of) nonuniform grids. The nonuniformity of the grids brings up 
a problem of consistency and supraconvergence that has no counterpart in the case 
of uniform grids. Indeed, the global error of these schemes seems to be insensitive 
to the deterioration of the part of the (formal) truncation error due to the lack of 
consistency of the schemes. 

This supraconvergence phenomenon has remained unexplained until now. In 
this paper, we identify the proper truncation error and show that optimal error 
estimates can be proven without using any regularity property of the approximate 
solution provided the schemes are "consistent enough." On the other hand, we show 
that the regularity properties of the numerical approximation can compensate the 
lack of consistency of the scheme because of the special structure of the part of 
the truncation error generated by the lack of consistency of the scheme. This 
special structure does not have anything to do with the nonlinear nature of the 
problem. Instead, it is a reflection of the consistency of the numerical flux and 
the fact that the scheme is written in conservation form. It is thanks to this that 
the supraconvergence phenomenon takes place. Let us point out that our analysis 
does not rule out the possibility of supraconvergence for schemes written in non- 
conservative form. To settle this question, the tools provided in this paper can be 
easily used. 
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The application of our approach to problems defined on general multidimensional 
grids, to nonsplitting numerical fluxes, and to high-order accurate methods are the 
subject of forthcoming publications. 
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